
Open Java Trading System
Dokumentation

Christian Schuhegger

4th December 2004

Contents
1 Java Data Objects 1

1.1 Meta-Data Classes . 1
1.2 Data Classes . 4

2 Interactive usage 5
2.1 SISC a Scheme implementation in Java . 5
2.2 Using the ilisp Emacs mode . 7
2.3 Configuring the SQLExplorer plugin for Eclipse . 8

1 Java Data Objects
In the Java Data Object layer you will find classes that serve as the representation of the data and
meta-data which is used as the basis for later analysis. Because the data is represented in different
forms, e.g. as java objects, as rows in a database or as xml files we use the object relational
mapping tool castor to map between the diferent representations.

1.1 Meta-Data Classes
In the end we want to be able to do data analysis on the market data. We gather the market
data via publicly available services like yahoo finance or onvista. These services we call observers,
because they observe the market activities.

One given equity which is uniquely identified by its ISIN number is traded at several different
markets, e.g. the NYSE or the German XETRA. Therefore at a given time there is not one single
price for a given equity, but there are as many prices as there are markets. Actually these price
differences will be used by arbitraters to generate profits.

Up to now we have already the concepts “Observer”, “MarketPlace” and “Equity” which we
all need to describe. In the meta data layer there is therefore a class for every such concept. These
classes all derive from the general base class Subject:

public class Subject {
private int id ;

private St r ing name ;

1

http://www.castor.org/

private St r ing d e s c r i p t i o n ;
private St r ing ur lSour c e s ;

}

The name uniquely identifies the subject in its category (Observer, MarketPlace or Equity). The
description is used to provide some documentation about the subject and the urlSources is a
white-space separated list of urls to web resources which are relevant for the given subject.

The derived concepts Observer, MarketPlace and Equity currently all do not provide any ad-
ditional information:

public class Observer extends Subject {
}
public class MarketPlace extends Subject {
}
public class Equity extends Subject {
}

Above we said that equities are uniquely identified by their ISIN number. But ISIN numbers are
not the only means that people use to identify equities. In Germany for example there are WKN
numbers in widespread use or yahoo uses its own yahoo symbols to identify securities, companies
or indices. In order to be able to find equities via these alternative identifiers we introduced the
concept of aliases:

public class Al ia s {
protected int id ;

protected Subject sub j e c t ;
protected AliasType type ;
protected MarketPlace market ;
protected St r ing a l i a s ;

}

Normally there is an authority that assigns these alternative identifiers. These authorities are
identified via the AliasType element and we will have a look at them in a minute. Sometimes an
alias is closely related to a market place that uses them and the MarketPlace element can be used
to express this close relation. The alias itself is of type String so that it can be used to express
anything.

public class AliasType {
protected int id ;

protected St r ing name ;
protected Observer observerLink ;
protected St r ing d e s c r i p t i o n ;
protected St r ing ur lSource ;

}

If there is such a central authority which assigns aliases you will have to define the authority as a
element of type Observer. The description and urlSource have similar meanings as in the case of
the Subject class.

In general elements of type Subject have more details as there were given as properties in the
Subject class. These additional properties can be described via the Property class.

2

public class Property {
protected int id ;

protected PropertyType type ;
protected St r ing name ;
protected St r ing d e s c r i p t i o n ;

}

All properties that express a quantity of similar meaning are of the same PropertyType. You can
think of properties of the same type as of quantities with the same unit or at least with units that
can be converted into eachother.

public class PropertyType {
protected int id ;

protected St r ing name ;
protected St r ing d e s c r i p t i o n ;

}

As an example we can take the properties “min-day-price”, “max-day-price”, “opening-price” and
“closing-price”. All of these properties are of the same type “price”. These quantities do not
necessarily have the same unit, e.g. sometimes they are expressed in e and sometimes they are
expressed in $, but you can convert from the one to the other.

While we are just talking about units. There is also a class that describes units:

public class Unit {
protected int id ;

protected St r ing name ;
protected PropertyType propertyTypeLink ;

}

There is a propertyTypeLink in order to express that all units that have the same propertyTypeLink
can be converted back and forth to oneanother.

In order to configure the data import methods there are classes DataSource and
DataSourceType. The DataSourceType can be seen more or less as a “mime type”. You should
be able to read from all data sources with the same DataSourceType with the same data source
handler code.

public class DataSourceType {
protected int id ;

protected St r ing name ;
protected St r ing d e s c r i p t i o n ;

}

The DataSource class looks as follows:

public class DataSource {
protected int id ;

3

protected DataSourceType type ;
protected St r ing u r l ;
protected St r ing d e s c r i p t i o n ;
protected Observer observerL ink ;
protected St r ing handlerClassName ;

}

The url element should be seen as a pattern that the handler code can use to retrieve actual
data for a specific equity. The observerLink tells you which service provides the data and the
handlerClassName will be used to create a handler class via Java reflection.

But because the handler class will need more information in order to do its job, which
it will have to retrieve from the database there is an additional configuration class called
ObserverDataSourceConfiguration. When the handler is called it will use this configuration data
to determin which data can be found in which position on the retrieved page.

public class ObserverDataSourceConf igurat ion {
protected int id ;

protected Property property ;
protected MarketPlace observedAt ;
protected DataSource observerDataSource ;
protected Unit un i t ;
protected St r ing co lu ;

}

The property tells the handler which property is configured via this ObserverDataSourceConfiguration
instance. Because a given observer can observe several markets we need to tell the handler which
market-place we are talking about. The handler needs to be informed which unit the property is
measured in aswell. The String field colu is there to provide additional information to handlers in
a free format. The name “colu” reminds of its origin. Initially it was meant to point to a column
in a csv file format.

1.2 Data Classes
All data classes derive from one common base class:

public class DataItem {
protected int id ;

protected Date time ;
protected Subject sub j e c t ;
protected ObserverDataSourceConf igurat ion source ;

}

The data is actually what we are interested in for our later analysis. The data that we collect is
a function of time, it belongs to a specific subject, it describes a certain aspect/property of that
subject, it is observed by an observer at a certain market-place and finally it has a unit. All the
information which is not directly present in this class can be retrieved by following the object
graph in the source element.

There are subclasses of this DataItem class for the concrete data types: Boolean, Double, Int,
String and Time.

4

2 Interactive usage

2.1 SISC a Scheme implementation in Java
This section is here to give you a preliminary feeling of what the project can do for you and where
the project is going in the future. The project is a pure Java project and designed in such a way
that you can easily integrate its functionality into your own applications. For my personal use I
prefer to work with the OpenJavaTradingSystem functionality in an interactive way. Therefore
I’ve written some adapter code to be able to call the OpenJavaTradingSystem functionality
from SISC, a pure Java implementation of the algorithmic programming language Scheme1. Other
types of integration, e.g. into Jython or BeanShell seem to be other options.

The following explanations assume that you are in the OpenJavaTradingSystem project
directory.

The first step before you can start to work with the OpenJavaTradingSystem is to start the
database server in the backgroud:

> java -cp lib/hsqldb.jar org.hsqldb.Server -database.0 data/jts -dbname.0 jts

Basically this step is optional if you change the “jdbc_location” property in the conf/jts.properties
configuration file to use the “:file:” access method. The advantage of using the database server
is that you can connect to it from several clients, whereas if you choose to use the “:file:” access
method only the OpenJavaTradingSystem application is able to access it.

In the project root directory you will find a modified startup script2 to start SISC. There is
an ant task sisc-repl aswell, which you can use to start the read-eval-print loop. Now you can
work interactively with the system. Let’s start with the initialization procedure. One day this
initialization procedure will be integrated into the bash startup script, but until then you have to
initialize the system as follows:

> (current-directory (getenv "sisc.home"))
> (load "sisc/functionality.scm")
> (ojts:init)

If you start the system for the first time you also have to initialize the content of some database
tables from an xml file:

> (ojts:read-xml-configuration "testread.xml")

From here on you can start retrieving data from the internet or displaying data in a graph. All of
the following commands are independent and can be executed3 one by one without the others:

> (ojts:fetch-data "yahoo-csv" "2004-06-01" "2004-08-23"
"DE0007500001" "XETRA")

> (ojts:fetch-data "yahoo-csv" "2004-06-01" ’()
"DE0007500001" "XETRA")

> (ojts:get-ohlc-for-equity "yahoo-csv" "2004-06-01" "2004-07-01"
"DE0007500001" "XETRA")

> (ojts:get-data-for-equity "yahoo-csv" "2004-06-01" "2004-07-01"

1A good first introduction can be found at Teach Yourself Scheme in Fixnum Days
2At the moment there is no equivalent windows script available, but I would be happy to integrate one if you

can provide me one.
3For those who do not know Scheme one remark: The indentation and newlines are optional. You can execute

every command on a single line.

5

http://sisc.sourceforge.net/
http://www.jython.org/
http://www.beanshell.org/
http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

"DE0007500001" "XETRA" *CLOSING-DAY-PRICE*)
> (ojts:get-data-for-equity "yahoo-csv" "2004-06-01" "2004-07-01"

"DE0007500001" "XETRA" *TRADING-DAY-VOLUME*)

> (ojts:display-chart
(ojts:create-candlestick-chart-for-equity

"yahoo-csv" "2004-06-01" "2004-07-01" "DE0007500001" "XETRA"))

All operations that require data will try to find that data in the database. If the data cannot be
found the system will try to get the data from the web. This action is the same as what happens
when you execute the

ojts:fetch-data

statement. Here you can see the result for one of the

ojts:get-data-for-equity

operations from above:

> (ojts:get-data-for-equity "yahoo-csv" "2004-06-01" "2004-07-01"
"DE0007500001" "XETRA" *TRADING-DAY-VOLUME*)

INFO - Was fetching data for 0 days therefore no commits are necessary.
(("2004-06-01" "integer" 1267190.0)
("2004-06-02" "integer" 2241070.0)
("2004-06-03" "integer" 1953370.0)
("2004-06-04" "integer" 2015380.0)
("2004-06-07" "integer" 1953470.0)
("2004-06-08" "integer" 1487590.0)
("2004-06-09" "integer" 3193410.0)
("2004-06-10" "integer" 1641250.0)
("2004-06-11" "integer" 1635660.0)
("2004-06-14" "integer" 2541210.0)
("2004-06-15" "integer" 2598440.0)
("2004-06-16" "integer" 1913340.0)
("2004-06-17" "integer" 2303420.0)
("2004-06-18" "integer" 3802480.0)
("2004-06-21" "integer" 2514830.0)
("2004-06-22" "integer" 1499570.0)
("2004-06-23" "integer" 2305450.0)
("2004-06-24" "integer" 4740060.0)
("2004-06-25" "integer" 2459800.0)
("2004-06-28" "integer" 2783660.0)
("2004-06-29" "integer" 2555130.0)
("2004-06-30" "integer" 4322920.0)
("2004-07-01" "integer" 4587870.0))

And in figure 1 you can see the output of the following chart creating command:

> (ojts:display-chart
(ojts:create-candlestick-chart-for-equity

"yahoo-csv" "2004-06-01" "2004-07-01" "DE0007500001" "XETRA"))

6

Figure 1: Sample Candlestick Chart

2.2 Using the ilisp Emacs mode
Normally you won’t work with the Scheme interpreter on the commandline. Usually one uses a
more convenient environment like the ilisp emacs mode. If you are on a unix system probably you
can get a package for your package system to install ilisp. If you are on windows you can follow
the installation procedure described at Setting up an IDE with Emacs on Windows.

As soon as you have a working ilisp mode you have to add the following section to your .emacs
file in order to make ilisp work together with SISC:

(setq ilisp-*use-fsf-compliant-keybindings* nil)

(add-hook ’ilisp-load-hook
’(lambda ()

(defdialect sisc "SISC Scheme"
scheme

(setq ilisp-program "~/workspace/OpenJavaTradingSystem/sisc-ilisp.sh")
; assume scheme is in path.

(setq comint-prompt-regexp "^> ")
(setq ilisp-eval-command

"(car (list (eval (read (open-input-string \"%s\"))) \"%s\" \"%s\"))"
ilisp-package-command "%s"
ilisp-macroexpand-command "(expand ’%s);%s"
ilisp-trace-command "(trace %s);%s"
ilisp-untrace-command "(untrace %s);%s"
ilisp-directory-command "(current-directory);%s"
ilisp-set-directory-command "(current-directory \"%s\")"
ilisp-describe-command "(describe %s)"
comint-ptyp t
comint-always-scroll t
ilisp-last-command "*"
))))

(set-default ’auto-mode-alist

7

file:graphics/ojts-candlestick-chart.png
http://sourceforge.net/projects/ilisp/
http://cl-cookbook.sourceforge.net/windows.html

(append ’(("\\.scm$" . scheme-mode)
("\\.sisc$" . scheme-mode))

auto-mode-alist))

(setq scheme-mode-hook ’(lambda () (require ’ilisp)))

You have to adapt the ilisp-program line to suite your set-up.
Now you are ready to use the Scheme interface to the OpenJavaTradingSystem from within

the ilisp emacs mode. In emacs use

M-x run-ilisp

and when you’re asked for the “Dialect” answer with “sisc”. This should startup the Scheme
interpreter in your emacs window.

Details about the usage of the ilisp emacs mode can be found in its manual.
And finally in figure 2 is a screenshot of using the OpenJavaTradingSystem via the Scheme

interface from within emacs.

Figure 2: Emacs – Ilisp – SISC

2.3 Configuring the SQLExplorer plugin for Eclipse
As mentioned above, the advantage of starting the database server instead of using the “:file:”
access method is that you can connect to the database via the network with other programs
aswell. I personally have started to use the SQLExplorer plugin for the Eclipse IDE. The packed
distribution can be found on their website under “Documents & files”. In order to install it you
only have to unpack the distribution into the Eclipse directory.

8

http://www.xemacs.org/Documentation/packages/html/ilisp.html
file:graphics/emacs-ilisp-sisc.png
https://sqlexplorer.dev.java.net/

After a restart of Eclipse you will have to open the SQLExplorer perspective. At the left top
in the “Drivers” tab you have to configure the “HSQLDB Server” by clicking on it with the right
mouse button and selecting “Change the selected Driver”. Look at the screen shot in figure 3 to
see how you should configure these fields. After adding the right jar file you have to click the “List

Figure 3: SQLExplorer HSQLDB driver configuration

Drivers” button and select the hsqldb JDBC driver as you can see in the screen shot.
The next step is to configure in the “Aliases” tab an alias for your database. In screen shot 4

you can see what to put there.

Figure 4: SQLExplorer HSQLDB alias configuration

Now you are ready to connect to the database (make sure the server is running) via the “Con-
nections” tab at the left bottom. As soon as you are connected you will see the “Database Structure
View” tab. Use this view to browse through the available tables in the database.

As next step you can click with your right mouse button on a table name and use “Generate
Select in SQL Editor” to open a prefilled SQL Editor tab. From here on you should be able to
find yourself your way through the functionality of this plugin.

9

file:graphics/sqlexplorer-hsqldb-driver.png
file:graphics/sqlexplorer-hsqldb-alias.png

	OpenJavaTradingSystem
	Contents
	Java Data Objects
	Meta-Data Classes
	Data Classes

	Interactive usage
	SISC a Scheme implementation in Java
	Using the ilisp Emacs mode
	Configuring the SQLExplorer plugin for Eclipse

